ON THE STABILITY OF THE EULER-LAGRANGE FUNCTIONAL EQUATION

JOHN M. RASSIAS

ABSTRACT. S. M. Ulam imposed before the Mathematics Club of the University of Wisconsin (in 1940) the following problem: "Give conditions in order for a linear mapping near an approximately linear mapping to exist". Then D. H. Hyers (1941) solved this problem. In this paper we state and prove a theorem for an analogous problem for approximately non-linear Euler-Lagrange mappings.

Theorem Let X be a normed linear space, Y be a Banach space, and $f: X \to Y$. If there exist $a, b: 0 \le a + b < 2$, and $c_2 \ge 0$ such that

(1)
$$||f(x+y) + f(x-y) - 2 \cdot [f(x) + f(y)]|| \le c_2 \cdot ||x||^a \cdot ||y||^b$$

for all $x,y\in X$, then there exists a unique non-linear mapping $N:X\to Y$ such that

(2)
$$||f(x) - N(x)|| \le c \cdot ||x||^{a+b}$$

and

$$(2)' N(x+y) + N(x-y) = 2 \cdot [N(x) + N(y)]$$

for all $x, y \in X$, where $c = c_2/(4 - 2^{a+b})$.

Received August 30, 1991.

Note that a mapping $N: X \to Y$ satisfying (2)' is called Euler-Lagrange mapping, and a mapping $f: X \to Y$ satisfying (1) is approximately Euler-Lagrange mapping.

Proof (of existence). Inequality (1) and y = x imply

(3)
$$||4^{-1} \cdot f(2x) - f(x)|| \le 4^{-1} \cdot c_2 \cdot ||x||^{a+b}$$
.

Similarly from (3) we get

$$||4^{-2} \cdot f(2^2x) - 4^{-1} \cdot f(2x)|| \le 4^{-1} \cdot c_2 \cdot 2^{a+b-2} \cdot ||x||^{a+b}.$$

Applying triangle inequality and adding (3) and (3)' we find

$$||4^{-2} \cdot f(2^{2}x) - f(x)|| \leq ||4^{-2} \cdot f(2^{2}x) - 4^{-3} \cdot f(2x)|| + ||4^{-1} \cdot f(2x) - f(x)|| \leq 4^{-1} \cdot c_{2} \cdot \sum_{i=0}^{1} 2^{i(a+b-2)} \cdot ||x||^{a+b}.$$

More generally, the following lemma holds.

Lemma 1. In space X,

(4)
$$||4^{-n} \cdot f(2^n x) - f(x)|| \le 4^{-1} \cdot c_2 \cdot \sum_{i=0}^{n-1} 2^{i(a+b-2)} \cdot ||x||^{a+b},$$

for some $c_2 \ge 0$ and for any positive integer n.

To prove Lemma 1 we work by induction on n. For n = 1, the result is obvious from (3). We assume then that (4) holds for n = k and prove that (4) is true for n = k + 1. Indeed from (4) and n = k and 2x = z we find

$$\begin{aligned} \|4^{-k} \cdot f(2^k z) - f(z)\| &\leq 4^{-1} \cdot c_2 \cdot \sum_{i=0}^{k-1} 2^{i(a+b-2)} \cdot \|z\|^{a+b}, \quad \text{or} \\ \|4^{-(k+1)} \cdot f(2^{k+1} x) - 4^{-1} \cdot f(2x)\| &\leq 4^{-1} \cdot c_2 \cdot \sum_{i=0}^{k-1} 2^{(i+1)(a+b-2)} \cdot \|x\|^{a+b} \end{aligned}$$

(5)
$$\|4^{-(k+1)} \cdot f(2^{k+1}x) - 4^{-1} \cdot f(2x)\| \le 4^{-1} \cdot c_2 \cdot \sum_{i=1}^{k} 2^{i(a+b-2)} \cdot \|x\|^{a+b}$$

Therefore from (3), (4), and triangle inequality we get

$$\begin{aligned} \|4^{-(k+1)} \cdot f(2^{k+1}x) - f(x)\| \\ &\leq \|4^{-(k+1)} \cdot f(2^{k+1}x) - 4^{-1} \cdot f(2x)\| + \|4^{-1} \cdot f(2x) - f(x)\| \\ &\leq 4^{-1} \cdot c_2 \cdot \sum_{i=0}^{k} 2^{i(a+b-2)} \cdot \|x\|^{a+b}, \quad \text{or} \end{aligned}$$

(4) holds for n = k + 1, or

(6)
$$\|4^{-(k+1)} \cdot f(2^{k+1}x) - f(x)\| \le 4^{-1} \cdot c_2 \cdot \sum_{i=0}^k 2^{i(a+b-2)} \cdot \|x\|^{a+b}.$$

It is clear that (3) and (6) yield (4), completing the proof of Lemma 1.

But

(7)
$$\sum_{i=0}^{n-1} 2^{i(a+b-2)} < \sum_{i=0}^{\infty} 2^{i(a+b-2)} = 1/(1-2^{a+b-2}) = c_0,$$

because $a, b: 0 \le a + b < 2$.

Set

$$(7)' c = 4^{-1} \cdot c_2 \cdot c_0 = c_2/(4 - 2^{a+b}).$$

Then Lemma 1, (7), and (7)' imply

(8)
$$\|4^{-n} \cdot f(2^n x) - f(x)\| \le c \cdot \|x\|^{a+b}$$

for any $x \in X$, any positive integer n, and some $c_2 \ge 0$.

Lemma 2. The sequence $\{4^{-n} \cdot f(2^n x)\}$ converges.

To prove that the sequence $\{4^{-n} \cdot f(2^n x)\}$ is a Cauchy sequence we first use (8) and the completeness of Y. In fact, if i > j > 0, then

(9)
$$\|4^{-i} \cdot f(2^{i}x) - 4^{-j} \cdot f(2^{j}x)\| = 4^{-j} \cdot \|4^{-(i-j)} \cdot f(2^{i-j} \cdot h) - f(h)\|,$$

where $h = 2^{j}x$. From (8) and (9) we get

$$\begin{array}{lcl} \|4^{-i} \cdot f(2^i x) - 4^{-j} \cdot f(2^j x)\| & \leq & 4^{-j} \cdot c \cdot \|h\|^{a+b}, \quad \text{or} \\ \\ \|4^{-i} \cdot f(2^i x) - 4^{-j} \cdot f(2^j x)\| & \leq & 4^{-j} \cdot c \cdot \|2^j x\|^{a+b} \\ \\ & = & c \cdot 2^{j(a+b-2)} \cdot \|x\|^{a+b} \end{array}$$

or

(10)
$$\lim_{i \to \infty} ||4^{-i} \cdot f(2^i x) - 4^{-j} \cdot f(2^j x)|| = 0$$

because $a, b: 0 \le a + b < 2$.

It is obvious now from (10) and the completeness of Y that the sequence $\{4^{-n} \cdot f(2^n x)\}$ converges and therefore the proof of Lemma 2 is complete. Set

(11)
$$N(x) = \lim_{n \to \infty} (4^{-n} \cdot f(2^n x)).$$

It is clear from (1) and (11) that

$$||f(2^nx+2^ny)+f(2^nx-2^ny)-2[f(2^nx)+f(2^ny)]|| \le c_2 \cdot ||2^nx||^a \cdot ||2^ny||^b,$$

OI

$$\begin{aligned} \|4^{-n} \cdot f(2^n(x+y)) + 4^{-n} \cdot f(2^n(x-y)) - 2[4^{-n} \cdot f(2^nx) + 4^{-n} \cdot f(2^ny)] \| \\ &\leq c_2 \cdot 4^{-n} \cdot \|2^nx\|^a \cdot \|2^ny\|^b = c_2 \cdot 2^{n(a+b-2)} \cdot \|x\|^a \cdot \|y\|^b \end{aligned}$$

or by taking limits $(n \to \infty)$

$$||N(x+y) + N(x-y) - 2[N(x) + N(y)]|| = 0$$

for any $x, y \in X$, because $a, b: 0 \le a + b < 2$, or

$$N(x + y) + N(x - y) = 2[N(x) + N(y)]$$

for any $x, y \in X$. However, if we take limits on (8) we obtain (2), completing the proof of existence of a non-linear Euler-Lagrange mapping $N: X \to Y$ satisfying (2).

Uniqueness. Let $M: X \to Y$ be a non-linear Euler-Lagrange mapping, such that

(12)
$$||f(x) - M(x)|| \le c' \cdot ||x||^{a'+b'}, \qquad c' \ge 0,$$

for any $x \in X$, where $a', b' : 0 \le a' + b' < 2$ and c' is a constant. If there exists a non-linear Euler-Lagrange mapping $N : X \to Y$, then

$$(13) N(x) = M(x)$$

for any $x \in X$.

To prove (13) we must prove the following Lemma 3. If (2)-(2)', (12) and

(12)
$$M(x+y) + M(x-y) = 2[M(x) + M(y)]$$

hold, then

$$||N(x) - M(x)|| \le c \cdot m^{a+b-2} \cdot ||x||^{a+b} + c' \cdot m^{a'+b'-2} \cdot ||x||^{a'+b'}$$

for all m, for any $x \in X$, $a, b : 0 \le a + b < 2$, and $a', b' : 0 \le a' + b' < 2$.

The required result (14) follows immediately if we use inequalities (2) and (12), the triangle inequality and the fact that

(15)
$$N(x) = m^{-2} \cdot N(mx), \quad M(x) = m^{-2} \cdot M(mx).$$

In fact,

$$||N(mx) - M(mx)|| \le ||N(mx) - f(mx)|| + ||f(mx) - M(mx)||.$$

Then if we apply (2), (12) and (15) we obtain inequality (14) completing the proof Lemma 3.

It is clear now that (14) implies

$$\lim_{m\to\infty}\|N(x)-M(x)\|=0$$

for any $x \in X$, and thus the proof of (13) is complete. Therefore the uniqueness part of our theorem is complete, as well.

Query. What is the situation in the above theorem in case a + b = 2?

REFERENCES

 D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27 (1941), 222-224. S.M. Ulam, "A Collection of Mathematical Problems", Intersci. Publ., N.Y. 1961;
"Problems in Modern Mathematics", Wiley, N.Y., 1964.

The National University of Athens, Pedagogical Department, 4, Agamemnonos Str., Aghia Paraskevi, Attikis 15342, Greece.